HF Simulator ;
Channel and Modem Modules

Eric E. Johnson
Johnson Research
Las Cruces, NM
7/8/91

1 INTRODUCTION

This manual describes the design and use of software simulators for narrow-band HF channels, and for
the robust modem specified in FED-STD-1045 and MIL-STD-188-141A. This software was developed
by Johnson Research under the sponsorship of the Institute for Telecommunication Sciences, National
Telecommunications and Information Administration, U.S. Department of Commerce, Boulder,
Colorado. The initial work leading to the development of these simulators was sponsored by the U.S.
Army Information Systems Engineering Command, Ft. Huachuca, Arizona.

Several approaches are often available to evaluate the potential performance of technical systems,
including analytical (mathematical) models, simulations, and measurement of real systems. Of these, a
mathematical model is usually the most powerful, in the sense that it is the fastest to evaluate, and
therefore allows the widest range of design choices to be compared within a given period of time. The
principal drawback of mathematical models is that the simplifying assumptions that must be made to
allow solution of the model in closed form often restrict the range of applicability of the model, and may
only approximately predict the performance of even the simplest real systems.

The most accurate technique for performance prediction is, of course, to build exactly the system of
interest, and to measure its performance over the range of important situations. The difficulties in this
approach are also obvious: first, it is usually economically impractical to construct all of the interesting
variations on a design, especially when operating on a tight schedule; second, it may be impossible to
produce the desired operating conditions on demand (e.g., to control the ionosphere to test HF systems).

Simulation techniques fall between the purely theoretical and the purely empirical approaches: they
use mathematical models whenever such models are available, but do not require that closed form
solutions exist; this permits the use of models with fewer simplifying assumptions, giving at least the
possibility of more accurate results. When the system to be simulated is modeled in software, the design
parameters of the system are usually easy to change, which permits simulations to evaluate a wider
range of choices than the purely empirical approach of building each different design. Thus, simulation
often strikes an attractive balance of accuracy, flexibility and speed.

Evaluators of HF modems and protocols have often used hardware "channel simulators” which
embody the well-known Watterson model of narrow-band skywave propagationl. These simulators
allow the evaluator to select three important ionospheric propagation characteristics — SNR, multipath
delay, and fading bandwidth — and to maintain the chosen channel characteristics for the duration of a
test. These channel simulators also possess the essential attribute of repeatability, which allows results
to be reproduced and later tests to be performed under the same experimental conditions.

1 Watterson, et al., "Experimental Confirmation of an HF Channel Model," IEEE Transactions on Communication
Technology, (COM-18) 6, pp. 792-803.'December 1970.

The essential distinction between these hardware simulators and the software simulators described
here is that a software "channel simulator" can be combined with software simulations of modems,
protocols, and so on much more easily than can a hardware simulator: combining hardware and
software simulators would require A/D and D/A converters and the software to drive them, while a
purely software approach connects the various simulators together in the link edit phase of compilation.
Another benefit of the software approach is that simulations can be run on nearly any computer without
the need to interact with a hardware simulator in real time. Finally, the most obvious benefit of a
software simulator is that the costly hardware simulator itself is not needed.

The simulators described here are found at the lowest levels of a stack of simulators organized to
correspond with the ISO model, as seen in Figure 1. These simulators are specifically oriented to the
standard ALE waveform, but can be modified to accommodate other waveforms in a straightforward
manner. The modem simulator converts tri-bits (integers from O to 7, inclusive) into vectors of complex
numbers (representing the selected FSK tones) to be transmitted through the HF channel by the channel
simulator module. The demodulator determines its output tri-bits by comparison of each received vector
with a set of templates, one per FSK tone.

Both the modem simulator and the HF channel simulator are provided as independently-compilable
modules, with functional interfaces to the main routine in the simulator. This main routine will usually
provide the user interface, acquire the parameters needed for each simulation run, call the initialization
routines in the modules, and then run the requested simulation(s). As an example of the use of these
modules, we present and discuss a BER simulator. ,

The design and implementation of the simulator modules discussed here were guided by the often
conflicting goals of speed, clarity, and portability. Within inner loops, the code is sometimes a bit
cryptic in order to save time because these instructions account for significant fractions of the total
execution time. Elsewhere the coding style is more transparent, and comments are included throughout.

Netx&-ork protécoi Simula

'ALE Protocol S;

DL P Sxmulata
Link :
Layer —
"-'ALE FEC.::Simulat
ALE Modem Slmulator
Physical
Layer HF Channel Simulator

Figure 1: Simulator Stack

2 HF CHANNEL SIMULATOR

The HF channel simulator described here includes two equal-weight fading paths, and implements
Watterson's model as follows:

1. Additive noise is generated with a Rayleigh amplitude distribution and a uniform phase
distribution.

2. The second path is delayed from the main path by a fixed delay line. The delay may be a
non-integral number of taps, in which case the output is obtained by interpolation.

3. Four independent fading gain processes are used for the in-phase and quadrature
components of the direct and delayed paths. These processes have Gaussian amplitude
distributions and Gaussian power spectra.

Each of these points is discussed in detail in the paragraph on the relevant functions below.

2.2 Data Structures

A few constants and data types and one external variable are defined in a header file hfdef . h, which
are used by both the HF channel simulator and the ALE modem simulator:

#define Pi 3.141592654
#define TPi 6.283185307

#define Ts 0.008
#define NPTS 32

typedef double SymVect[2] [NPTS];

extern double SiglLev; /* declared in hflib.c */

P1i is simply the constant . TPi is 2%. Ts is the symbol period: 8 ms. The modem tones (symbols)
are processed in both simulators at a rate of NPTS samples per tone. Symbols are therefore stored as 32-
sample complex vectors of type SymVect, in which row 0 is the in-phase (real) component and row 1 is
the quadrature (imaginary) component. Finally, the global variable SigLev is declared as external.

2.3 HFchan

The key function in the channel simulator is HF chan; it uses the following variables and data structures:

double Siglev = 1.0; /* global so it can be set by main routine */

static SymVect RcvSig;

The global variable SigLev sets the signal-to-noise ratio of the HF channel. (SigLev is global so that
the main routine can set the SNR according to user requests, or vary the SNR through several runs.)
RcvSigis a statically-allocated symbol vector (SymVect) used by HF chan to store its result.

3

SymVect *HFchan (XmitSig)
SymVect *XmitSig;
{
register int i;
register SymVect *in, *out;
double ni, nq, Ri, Rq, RDi, RDg, tmpl, tmp2;
register double Xi, Xq, Di, Dg; /* in-phase and quadrature main and 6K */
/* delayed path samples, respectively */
in = XmitSig;
out = RcvSig;
for (i=0; i<NPTS; i++) {

Rayleigh(&ni, &nq); /* GENERATE NOISE */
/* Rayleigh generates in-phase and quadrature */
/* components, jointly normal, with each *x/
/* component having RMS amplitude of unity; */
/* RMS noise power is also unity. */
if (FreqgSpread > 0.0) { /* GENERATE FADING GAINS */

FadeGains (IFade0, QFade0); /* generate direct-path fade gains */
FadeGains (IFadel, QFadel); /* generate delayed-path fade gains */
}

else {
Rayleigh(&tmpl, &tmp2); /* don't care (to draw RNs) */
Rayleigh (&tmpl, &tmp2); /* leave fade gains at initialized */
} /* values (phase shift only) */
if (DelayLinelen + D1yTF > 1.0) { /* multipath? */

Di = DelayLine(Xi=SigLev* (*in) [0] [i], &iptr, IDLine);/* generate */
Dg = DelayLine (Xg=SigLev* (*in) [1] [i], &gptr, QDLine);/* delayed */
/* signals */

CompMult (Xi, Xg, *IFade0O, *QFadeO, &Ri, &Rq);/* introduce fading */
CompMult (Di, Dgq, *IFadel, *QFadel, &RDi, &RDQq);
}
else { /* all power in single path */
CompMult ((*in) (0] [i], (*in) [1][i], *IFade0O, *QFade0O, &Ri, &RQ):
RDi = RDg = 0.0;
Ri *= sqrt2;
Rq *= sqrt2;
}
(*out) [0] (1] = Ri + RDi + ni; /* compute output */
(*out) (1] (1] = Rg + RDg + nq;
}
return (out);

The function calling HF chan passes a pointer to a symbol vector, which is to be processed by the
simulated HF channel. One sample at a time is processed in the inner loop (see the code above). First,
the samples of noise for each time step are generated; then the fading gains are computed for the direct
and delayed paths; next, the delay lines are updated, returning the current delayed path sample, and the
fade gains computed above are applied; finally, the noise and direct and delayed path samples are added
together and the result is stored in the output symbol vector. When all of the elements of the input
vector have been processed, a pointer to the output vector is returned.

The registered pointers in and out are used for fast access to the input and output symbol vectors,
respectively. ni and ng store the noise samples, Xi and Xq the input samples, Di and Dq the delayed
samples, and Ri, Rq, RD1i, and RDq the results for each time step.

4

Note that the output symbol vector is always stored in RcvSig, and that the external function is given
a pointer to this (static) array. If that function needs access to more than one received symbol at a time,
it will need to pass a pointer to a symbol vector to (a modified version of) HF chan each time.

2.4 DelayLine

The delayed path used to simulate multipath is implemented as a pair of digital delay lines, IDLine (in-
phase) and QDLine (quadrature). These arrays hold circular buffers of DelayLineLen samples.
When the delay is not an integral multiple of the sample period, D1y TF stores the odd fraction of a
sample. iptr and gptr store the current positions in the circular buffers.

static int DelayLinelen; /* if more than one set of delay lines */
static double DlyTF; /* needed, must pass these as parms */
static int iptr, gptr; /* these are passed as parms */

static double IDLine(65], QDLine[65];

The DelayLine function is given a pointer LName to the delay line to use (which is just an array of
double precision floating point numbers), the current offset Pt r into the circular buffer embedded in
that array, and the current direct path sample InSig to put into the delay line. The offset is incremented
modulo DelayLineLen, the length of the circular buffer, and nt is set to the offset of the next element
past the updated Pt r, again modulo DelayLineLen. The delay line output for this time step is
interpolated from the elements pointed to by Pt r and nt, and InSig is put into the delay line.

However, if the total delay is less than one sample, the circular buffer will be of length 1, and only
the first element of the array will be used.

double DelayLine(InSig, Ptr, LName)

double InSig; /* current sample: put into delay line */
int *Ptr; /* current offset into delay line */
double *LName; /* ptr to delay line to use o

register double *tempptr, temp;
register int nt; :

if (DelaylLineLen > 1) { /* use the delay line */
nt = (++(*Ptr)+l) % DelayLinelen; o
tempptr = LName + (*Ptr %= DelayLinelen);
temp = *tempptr * D1yTF + (*(LName+nt)) * (1.0 - D1lyTF);
*tempptr = InSig;

}

else { /* use only first element of delay line */
temp = InSig * (1.0 - D1lyTF) + *LName * D1lyTF;
*LName = InSig;

}

return (temp);

The delay line function could be optimized for the common case of an integral number of samples in the
delay time (D1yTF = 0.0). The interpolation statements could also be rewritten to reduce the number of
floating point operations. Because this function is called in the inner loop, these could be worthwhile.

5

2.5 Rayleigh

Noise is generated using a pseudorandom number generator with a uniform (0, 1) distribution. A
Rayleigh amplitude is produced using the inverse transform technique, and a uniformly-distributed
phase is generated directly. The function returns its results in rectangular coordinates.

void Rayleigh (x, y)
double *x, *y;

{
register double r, a;

r = sqrt(-2.0*log(uniform())):;
a = TPi * uniform();

*x = r * cos(a);

*y = r * sin(a);

2.6 FadeGains

The fade gains module contains three functions:
FadeGains, the external interface to the module
Gauss_Filter, a DSP filter which produces fade gains with the correct statistical properti;es
CompMult, which multiplies complex arguments to apply the complex fade gains

FreqgSpread, g, a0, al, and a2 are the fading bandwidth (Doppler spread) and coefficients used
in the DSP Gaussian filter, respectively. The IFade0, QFade0O, IFadel, and QFadel arrays
hold the state variables for in-phase and quadrature, direct and delayed paths, respectively, for the filter;
in the usual DSP terms, these arrays hold (in order) y[n], y[n-1], y[n-2], x[n], x[n-1], and x[n-2]: the
current and past outputs and the current and past inputs, as discussed further in the Gauss_Filter section.

static double FreqgSpread, g, a0, al, aZ2;
static double IFade0[6], QFade0O([6], /* direct-path fading filter state vars */
IFadel[6], QFadel[6];/* delayed-path fading filter state vars */

The Watterson model specifies that the fading gains (tap gains) be independent zero-mean complex-
Gaussian random processes with Rayleigh amplitude and uniform phase density functions, and Gaussian
power spectra. Random processes with the requisite characteristics are produced by passing Rayleigh-
distributed noise through a filter whose IH(jQ2)I2 has the required Gaussian shape.

void FadeGains (i, q)
double *i, *q;

{
/* generate Rayleigh-distributed fade gain perturbations */
Rayleigh(i+3, q+3); /* assign to current input positions */

/* Run through gaussian filter */
Gauss_Filter(i);
Gauss_Filter(q);

2.7 Gauss Filter

Watterson et al. chose a Gaussian shape for the power spectrum of the tap gain functions in their model:

V,i(V) - Csia(o) exp I:_ (V . Vsin)zJ i Csib(o) exp {_ !V - Vsib)z}
(2“)1/2 Osia zosilz (Zn)lﬂ Osib 2<,sibz

where the s subscript indicates Watterson's specific model, the i subscript refers to the i-th tap, and
the a and b subscripts refer to the two magnetoionic components (where these are distinguishable).
Csi_(0) is the fraction of total channel input power delivered by each component, s;_ is the frequency
spread of each component, and vs;_ is the frequency offset of the power spectrum of each component.
(All frequencies in the Watterson model are in Hz.) In keeping with usual practice, our simulator does
not resolve the magnetoionic components, and therefore requires only a single Gaussian function for the
tap-gain spectrum, and no frequency offset v; is used.

The spectrum vg;j(V) is the Fourier transform of the tap-gain correlation function. The correlation
function of the output of a filter whose input is Rayleigh noise is simply the magnitude squared of its
impulse response, so its power spectrum is the magnitude squared of its transfer function. Thus, we may
produce a random process with the correct spectrum by passing Rayleigh noise through a filter with a
transfer function magnitude squared given by

(:o)2 _ C0) 2}
Gl - S0 exp- -2

In our simulator, the two paths have equal power and the same frequency spread, so the subscripts on C
and ¢ are dropped.

This transfer function can be closely approximated by a two-pole filter of the form shown below.
The power spectra of the two filters are compared in Figure 2.

H,(s) =

21:0)2 (21:0) ol

Clearly, the DC gains of the filters must be the same, so

_ C)
V2% o.

The parameter a must be set to Ya/2Z for the correct total power; ¢ was set to 3/4 to obtain the
approximation to a Gaussian shape shown in Figure 2.
A discrete-time (i.e., DSP) filter to implement the Hy(s) above was designed using the bilinear

transformation

s_,z(z(

1+z°1 T z+1

The sample rate (4000 samples/s) so far exceeds the frequency spreads of interest (a few Hz) that pre-
warping of the critical frequencies is not necessary.

0.20
1 —f— Watterson
| —®— 2-pole filter
0.15 4
h-J <
e
<
-
@
s 0101
©
=
e
o
<
p =
0.05 4
o
0.00 7 - BC0 000wty .l .
0 4 8 . 12

Frequency (Hz)

Figure 2: Comparison of Power Spectra (2 Hz Frequency Spread)

The bilinear transformation on Hy(s) produces an H(z) in the z-transform domain:

H(z) = VG (z+1)2
4?2 ;102423 (5 2
pucy (z-1)% + T (z-1)(z+1) + (z+1)
_ fG’(z2+2z+1)
2 2
A (S +1)zz+z(1-(;gﬁ))zﬁu((;gT -1—{&3?+1)

Comparing this expression for the desired H(z) to the standard form for a DSP filter

we extract the values for the coefficients by inspection:
ag =A+C+1 a;=2(1-C) a;=C-A+l

bop=by=1 b;=2
where

A=Ecaﬁ and C=($)2.

The current output y[n] is computed from the past outputs y[n-1] and y[n-2] and the current and past
inputs x[n], x[n-1], and x[n-2] using the following recurrence relation, where g = YG:

ag y[n] + ay y[n-1] + a2 y[n-2] = g (bo x[n] + by x[n-1] + b2 x[n-2])

y[n] = (g (bo x[n] + by x[n-1] + b2 x[n-2]) —ay y[n-1] — a2 y[n-2]) / ap

This expression is used in the code for Gauss_Filter listed below.

void Gauss_Filter (Fade)
double *Fade;

{
/* Fade array of input/output data: */
/* Fade[0] is the current filter output */
/* Fade[0-2] are the current and past outputs */
/* Fade[3-5] are the current and past inputs */

/* Gaussian filter: 2-pole, 2-zero IIR */
Fade[0])=(g*(Fade(3]+2*Fade[4]+Fade[5])-al*Fade([l]-a2*Fade[2])/a0;

/* adjust the history terms */
Fade[2]=Fade[1];
Fade(l]=Fade[0];
Fade[5]=Fade[4]:
Fade[4]=Fade([3];

2.8 CompMult

CompMult simply multiplies two complex arguments to produce a complex result. Because this
function is called twice in the inner loop, some speedup could be achieved by making this a macro.

void CompMult (Xi, Xq, Yi, Yq, 2i, Zq) /* Z =X *Y x/
double Xi, Xq, Yi, Yq, *Zi, *zg:

{
*Zi = Xi*Yi - Xg*Yq;
*Z2qg = Xi*Yq + Xg*Yi;

The initialization routine listed here directly queries the user for the multipath delay and frequency
spread parameters. Where this is not appropriate, these two parameters should be passed to
Initialize as arguments.

/**t******************* INITIALIZATION ****************'k*******************/

void Initialize()
{
register int i;
double DlyTime, a, ¢, A, C, dt;

DlyTime is the floating point value of multipath delay provided by the user; it is converted to the global
variables DelayLineLen and D1yTF for use by DelayLine. dt is the time step (sample interval)
used, and is set to Ts/NPTS.

/t***********t******* SET UP DELAY LINES *********************/

do {
printf ("Enter delay time (ms): ");
scanf ("$1f", &DlyTime);

} while (DlyTime < 0.0);

dt = Ts/NPTS; /* dt = sample period */

DlyTime /= (dt * le3); /* scale DlyTime from milliseconds to samples */
D1yTF = DlyTime - (DelayLinelen = (int)DlyTime) ;

DelayLinelLen++;

iptr = gqptr = 0;

for (i=0; i<65; i++) IDLine(i] = QDLine([i] = 0.0;

The variables a, c, A, and C are as described in the Gauss_Filter section. However, because
FreqSpread is scaled by 2n times dt, a and c have twice the values described earlier.

Half of the total power is allotted to each path, resulting in the expression shown for g.

The initialization of the fading filter state variables is used to overcome initial transients.

/******t***‘k****** SET UP FADING GENERATOR **********t******/
do {

printf ("Enter frequency spread (Hz): ");

scanf ("%$1f", &FreqgSpread):
} while (FreqSpread < 0.0);

if (FregSpread > 0.0) {
FregqSpread *= dt*TPi; /* scale from Hz to radians per sample */

/* magic numbers for Gaussian filter */

a = sqrt (TPi);

c =1.5;

A = a/FreqgSpread;

C = c/FregSpread; C *= C;

/* Gaussian filter coefficients */
g = sqrt(0.5*sqrt (TPi) /FreqgSpread) ;
a0 =A+C+ 1.0;
al = 2*(1.0 - C);
a2 =C + 1.0 - A;

for (i=0; i<6; i++) /* clear fading filter state variables . . . */
* (IFade0+i) = * (QFadeO+i) = *(IFadel+i) = *(QFadel+i) = 0.0;

for (i=0; i<1.0/FreqSpread; i++) { /* and initialize them */
FadeGains (IFade0, QFade0);
FadeGains (IFadel, QFadel):

}

}
else /* fading generator disabled; set fixed gains for taps */

* (IFade(0) = *(QFade(0) = *(IFadel) = *(QFadel) = sqrt2/2.0;

11

3 UTILITIES
3.1 Uniform

This random number generator with uniform distribution is described in the Communications of the
ACM, (31) 6, pp. 742-749+, June 1988.

double uniform()

{
static long sl = 123456787, s2 = 987654323;
long z, k;

k = sl / 53668; .
sl = 40014 * (sl - k * 53668) - (k * 12211);
if (sl < 0) sl += 2147483563;

k = 82 / 52774;
82 = 40692 * (82 - k * 52774) - (k * 3791);
if (82 < 0) 82 += 2147483399;

z = 81 - 82;
if (z < 1) z += 2147483562;

return (z * 4.656613E-10);

3.2 Randint

RandInt generates random integers in a specified range. It is useful for generating "random" tri-bits to
be sent through the simulator.

int RandInt(i) /* Generates random integers in the range 0 to i-1. */
int i; /* In run of 100,000 with 32 bins, had variation of */
{ /* 6% of mean from max bin to min bin. * /

return (i*uniform()):

}

HammingWt 3 returns the number of 1 bits in the 3 least-significant bits of its argument.

int hammingwt3 (w)
int w;
{
static int wt(8] = (0, 1, 1, 2, 1, 2, 2, 3}:

return (wt(w & 7]);

12

4 ALE MODEM SIMULATOR

The ALE modem simulation routines convert tri-bits to and from symbol vectors suitable for processing
by the channel simulator.

4.1 Data Structures

The tone array is pre-computed by InitModem, and contains the complex symbol vector
corresponding to each of the FSK tones.

static double tone[m_ary] [2] [NPTS];

4.2 FSKmod
FSKmod simply returns a pointer to the appropriate t one.
SymVect *FSKmod (InSym) /* use: SymVect *XmitSig */
int InSym; /* XmitSig = FSKmod(InSym) */
{ /* ... (*XmitSig) [1] (3] */

return (tone([InSym]);
}

4.3 FSKdemod

The FSK demodulator shown below employs a "guard band" tcchniqfxe: it ignores the first and last 25%
of the baud, and only integrates over the middle 50%; this reduces the effect of multipath delays of up to
2 ms. Also, the demodulator stays synchronized with the direct path signal, even when the delayed path
is delivering more power; this may be unrealistic and sub-optimal.

int FSKdemod (RcvSig)
SymVect *RcvSig;
{
register int i, j, out;
register double sumi, sumg, sum, max=0.0;
register SymVect *in;

in = RcvSig;
for (i=0; i<m_ary; i++) ({
sumi = sumq = 0.0;
for (j=NPTS/4; j<(3*NPTS)/4; j++) {
sumi += (*in) [0] [j]l*tone([i] [0][J] + (*in) [1]([j]*tone([i] [1]([]]:
sumq += (*in) [1][jl*tone([i][0]([J] - (*in) [0][j]*tone([i] (1] ([]];
}
if ((sum = sumi*sumi + sumg*sumqg) >= max) {
max = sum;
out = i;
}
}

return (out);

13

4.4 InitModem

The purpose of InitModem is to initialize the t one vectors for the eight FSK tones.

void InitModem()

{
register int i, iprime, j;
double f[m_ary], dt;
register double x, dx;

£f[(0] = -(£f([7] = 875.0); /* 8-ary FSK tone frequencies */

f[(1] = -(£f([6] = 625.0);

f[(2] = -(£(5] = 375.0);

f[3] = -(£f[4] = 125.0);

dt = Ts/NPTS;)

for (i=0; i<m_ary/2; i++) { /* generate tone vectors */
iprime = m_ary-i-1; /* index of conjugate frequency */

x =0.0;
dx = TPi*f[iprime] *dt;
for (j=0; Jj<NPTS; j++) {

tone(i] [0][j] = tone[iprime] [0] [j] = cos(x); /* real part of tone */
tone[i] [1][j] = -(tone(iprime] [1][]j] = sin(x));/* imag part of tone*/
x += dx; if (x >= TPi) x -= TPi; s

5 BER SIMULATOR

The BER simulator is a simple program that illustrates the use of the channel and modem modules.

main ()

{
long i, insym, outsym, RunlLength, errors=0;

printf ("SNR (dB): ");
scanf ("$1£f", &Siglev):;
SigLev = pow(10.0, SigLev/20.0); /* convert from dB to voltage ratio */

Initialize():
InitModem() ;

printf ("Run length: ");
scanf ("$1d", &RunlLength);
printf("\n");

for (i=0; i<RunlLength; i++)
if ((outsym = ALEmodem(insym = RandInt(8))) != insym) {
printf ("*");
errors += hammingwt3(insym ~ outsym);
}
else printf(".");

printf ("\nBER = %5.31f\n", (double)errors/ (3.0 * RunLength));

14

6 MEASUREMENTS
6.1 SNR Calibration
Good Channel

Multipath delay = 0.5 ms
Fading BW = 0.1 Hz

Bauds = 10 Average SNR = -9.73

Bauds = 100 Average SNR = -3.53

Bauds = 1000 Average SNR = -0.26

Bauds = 10000 Average SNR = -0.06

Bauds = 50000 Average SNR = -0.08

Boor Chanpel

Multipath delay = 2 ms -

Fading bandwidth = 2 Hz

Bauds = 10 Average SNR = -5.93

Bauds = 100 Average SNR = -1.34

Bauds = 1000 Average SNR = 0.18

Bauds = 10000 Average SNR = -0.07

Bauds = 50000 Average SNR = 0.05

Gaussian Channel

Multipath delay = 0

Fading bandwidth = 0

Bauds = 10 Average SNR = -0.39

Bauds = 100 Average SNR = 0.22

Bauds = 1000 Average SNR = 0.16

Bauds = 10000 Average SNR = 0.15

Bauds = 50000 Average SNR = 0.14

Elat Fading Channel

Multipath delay = 0

Fading bandwidth = .1

Bauds = 10 Average SNR = -8.14

Bauds = 100 Average SNR = -2.06

Bauds = 1000 Average SNR = 1.55

Bauds = 10000 Average SNR = -0.48

Bauds = 50000 Average SNR = -0.49

Multipath-Qnly Channel

Multipath delay = .1

Fading bandwidth = 0

Bauds = 10 Average SNR = -0.88

Bauds = 100 Average SNR = -0.27

Bauds = 1000 Average SNR = -0.33

Bauds = 10000 Average SNR = -0.34

Bauds = 50000 Average SNR = -0.35
6.2 BER Simulations

The BER simulator produced the results shown on the following pages. The error patterns for the -3 dB
simulations are listed to show the characteristics of the simulations. '*' indicates an error in at least one
bit of a received tone, while '.' indicates a tone received error-free.

15

6.2.1 BER — Good Channel

SNR (dB): -3

Enter delay time (ms):
Enter frequency spread (Hz):

Run length: 10000

Xkkk RAkARK Kk K khKk

* * *

s e s e e e s eesesssee

s e e e e s e e s
* * * *

D el ae

kkk * *x
* k kK * * *

ok hkkh

*
*

.
.
.
.
.
.
.
.
.
.
.
.
.
.

*
* % ¥ o
*

*

*

*

»*

*

»

*

*

*

.

.
.
.
.
.
.
.
.
.
.
.

»*
»
»

* % * o
»

’é eFeeennn

* % L kR K
* x, %
. e T
* L RkkR %
* % *

. ceveee¥,,

. ...'l.l.*'

Ahkkhkhkk hikk **
.
Kk khkkkkkkk ok kkkk

* kk

*

* ok ok k

*k kK
.

k

*

RN

.5

* k*k

ok kkk Kk

Akk k% * kx *
e R E GE R H kR
* * % *
I T
* X, Kk kkx *
L R TR ceceed®,
Xkk Kk *
ceeean . Kttt
Xk KRKKKK KKKk kkk Kk Kk Kk
X, KK kK k ** X, %
s R ERRE R e va e i W sane s
* * X kK X, %
R R R R T Sk A P e
XAk Kk *
AT B I R R
* % * % * Kk *
R I Raia R UT AP P P Y
xkk Kk * * *
. o 5% 0 Mo g ®ig 0 6 6™ie 0 ey
L KRR RK kk_ kkkk Kk kk_hkk
* L R 2
% wie T e wE N w erain Riele emie ® e a e N
* X, k%
B T R T T R
*x * *xx *
A R R ceeeseea®,
* *
B T T I I P, Y
* *x kK
B T Tl P,
* *
B T I
X, kk Kk Kk Kk k X k k%
T LT PR S P T

Ak kkk K * * *

ceXiL KX, I T I R I S
* x *
T T I T

*x kk *

I R R P R

** *
R I I S P,
* *

N R
® e s 00 0 000 e s 0 00 co*"..
* * % *
R T P

Xk * * *
B T T I o S

kk k Kk kk ok Kk kk kK
cina BE W K R H L, E s .
KhkkkkAk* K hRkAK KKk hkk _kkK
*. R .
AhkkkAh khkkkkhkhhk Xk Kkkkk
. cee XX,
* Akkkkk ok Khkk Kk Kk Kk _*
oo Lo X JHK KK,
*x * L
T T T A T R
B T
* **
B R R I I U L 8
* * *
B I
cecesceercetesct et n e
* *
T I R R)
* * *
B R R T I T o U P,
* % *k Kk k k _* *
B A Rl TR I PP PP
* Ak Xk ok x Kk, _*x
B R T R I I I S
* *x kk * %
B R R I L 8
* K * * k * K * kK
B T R R P IPE JN
* *
I T T I T A,
+ i
B T T R T
* *x * Lk *
B T R R
* *
R R
cecescctssccsteaens
*
R T
B
*
R
* % X kkkkkk
AT ceeen
* *x x *x *x
o W B H R I N,
X, kkk
ceee Xl N, e
** * * * kK
ee¥il *aL., .

*x, * * *x *
P T el T R
T T I

*x *
P T T T I
*, *x
cesssssssseee T il e
* % * * %
R M TR I Y
* * * * x * *
P T R I P S
Kkkk kk_ _Kkkk kk K Kkkk*x
¥ ca XL K, .
Xk kKKK Kk KKKKKKRKK KAK

»

* * * * *

* Kk &

* *
e e s s e 0 s 0 0 e a0 e .
* kK *k kk kK
. “ e e . . .

kkk k¥ k kkkkhkkk

. . e e
* * LE B
« T e e
* *
c s e . e e
ok kok v e Ny 58
* * *
s e s e s e e s eeeaa
* kK * * *
DRI Tal S . « e
* %k k * * Kk k ok ok
e e e e .

Ahkkhkkhkhhk Kk Ak
khkhkkk kk k hhk

* % * % e

.
.
.
.
.
.
.
.
.
.
.
.
.
.

cees
-*.-
*

o My

'.l.

t--
*kkx

.*cc
..ll*...lil.l'l'.
.-ut"'.ot-.t-oo-
l..l'll..l.*.*.l
-n-*tnoocc**on-ol
.....l..**cilittl
---**-**-*oc**.-l
Kkk kkk L KKK KKK

.
*
kkk kk K
*

ok khkkk

R

s e s e s e e ee snne

BER = 0.136

At SNR = +3 dB,
At SNR = +9 dB,

.l*l.l
* kkk
JEREK

*
ee s e
*
co e
e T ee e

(10,000
(10,000

*
*
»
»

e T e T e N

** *
e e

e s e e

--*--uo
--'-tt*
***-uo-
l.*....

*
irases
*
Fae¥.s
*
vonn b
* % *
c o
eFowany
*
senia®e
*ll.lll

tones)
tones)

o % % % .
* »*
.

* % e

17

.
T

* % % %
*

*

* % * e+

* * ¥ o

arsowia
-*-II
¥ oo o
ceans
.
JRE,
. ll*
*
on ¥
**
e
ol e
coces
*k Kk
ok Kk
*
eo¥a
*
o®eus
*
siaiw s
* ok k Kk
.
*kkkk
*_ %
o*aa
* %k
JEE, .
*
o¥eien
cesee
--u

* X X * .

6.2.2 BER — Poor Channel

SNR (dB):
Enter delay time (ms): 2

Enter frequency spread (Hz)
Run length:

*

*

=3

10000

*
.
.

hhkhkkh *

*

* &

khkk * &

« T e
*kx
.

.

-ccl..u.c-*n--c*'o.
* **-.c**ac s e 00
****o**.uo- “ e 00 00
-o-'*..- l**l* -.o,
-----o-**-t-nc.*-.t
.Q***.CDOO*CI*II*.I
--.*-***-c-c.c--**.
* %
I
*k ok
T ol R
cescessecescesesans
X Kk, kkkRA Kk Kk k%
o------***.o..*** .
oo.*.o-on*l-'oo*.**
0* --'** 'I.l*lll*‘
e e s 0 l.ll'*l ***c
LR) 0--*00- e o0
*n-----n.lo**oo-...
-lv-c---.-'t'.t-"-
x, _
cessssscnessess®as
* *x, % *
P T R RS
'.Itl.-.I**Il*ll..'
*.***.*I.*I*lililt.
...*II**llll*...lI.
l.l.--*t *t*l**..l*
X,k kkkkk _ kkhkk
*
S
* % *
sins o Xu o s Fulsi®, vas’y
l.*tll .**l*l. L
* * *
ceee® ¥ tiieeeFiaen
.o*oo.*.*****t .-.*
Kkk Kk Kk
. X, cecescnen
*% *
cacenmine R, R LR,
* *
ceFeeeea® il ®,,
Xk kkk *
awE, cees®iian

* *
B
***IIOOODIII.I.*.*C
T D

*% *x
e [N .
* e e 00 0 *OI*I'...I
%
I R R T I T S
* kK *
eFaue e L
l-'*.*'.!l**l'llto'
ll".‘."--*'.ﬂl'..
..*.....l‘..l....l'
L R ARk kAR kR Kk Kk
* % AkkRk KRR RRAN
eFeeoe . .o
*k
e AR R)
.*o***.*tiocntc
*
ceessecccne¥ N,
* *
ce®eeerescnace¥ians
x, kkk
cecsssseene¥,,

*
cevssnsnssss®ioioee
....*I.**'.l't.*II'
.*****lll..lll-loll
*t*l*’-**I***l.lOll
R e 2 2 I T
-o'*-oc.**.----'-a
. .***DC.ICQI*'QHU*

*
ceeo ¥,
*
soe¥®ey,
xkkk
* kK
. .
---*--
*kk Kk

.
n-cc-*
cessee
ceceses

*
eee¥®..
*
ceee¥,
*
eFeesoo
** *
oo
*
ceeen
-**o-n
* %
JHE L R,
* k%
Kok,
sisit s« o
cecens
*x_ *
s Xa®,
*
ceces
* *
F ¥,
cscecns
*
sevea
*
ceses
x, kK
R Rl
cseses
*
ee®a.
'--*-
*
saa R,
*x kk
e ¥,
*
ee¥aLe
*
voow¥y
*
oo se i,
cesces
* ok k
oo
*
sev®an
*, _x
v 5 %5 4
cssene
v 00wl
ssssee
* ok ok
oo
*

T 1 3
* *
ceen
* *
o ¥ ¥,
*
cee¥o.

* ok k

e
cecsas
cesese
wos®os
* * %

ces
ceceas
cssees
-n*-c*

* ok k
oo

*
ALY
cesese

* o

ceeeae ¥,
* e 00 . -*
Lkkkkk Kk
*

* ok ok ok k ok

*
*
*

* .
.

»
* ¥ ¥ e *

*

* * % .

**
**

**
* *

**

*
»*

* % % .

.

*

* * * o

.otoll.l!**'l -***-*-*.***-*****oto*
* * *
T E AR R R R
* *
cessscsnsasesssFiiiiiiiienae FLELK,
A T N T T N T T DA I
. l.*.Q**-.'*---0-.*...**'.-0'-----
****--'*ct.-‘..on'.*-cc***no*l----*
. ..lll.ll".. -.’.-.--*.Q-'II*OO*O
ll-0..-ll-tll.**‘**...l**...lll.‘.'
* % *
ceececesseascsnsees® ¥ it
..-.‘..-*"..**...‘*.. c* Iiil*l. .
s-.o-**.-.***---t"nt.ct- * o0 0 0. .
D R L L N I I'lll***....Il .
Xk Kk
R T A R L T e, o
n.o-**-.* IIl*..'.‘l.ltl....',**...
'---*-o-ll*uo**oooo**-lllllnc--..
* * X Kk Kk
R R R T ¥
.t.* --0-'-'*'-.-.-.*'-*t.'*.. khkkk
l.l.*.Il.lll.ll.lllll.lI.*..*.*O'
* * Xk Kk ok Kk _k
dosnnse®esnntsnnee e FE MR, F ok, ,
-o**-----..***o*vlooo.o-o ...'.l'..
...I.l-l-II*OOIIIIII....I L A
.**-*--nuon--.o-l'l*.*‘**lcoooo*oot
*
S
HC.OIQIOIIIQUOI'HI*. .*'l'.---
* * *
B T L T T
D o-*--0.n-'c-c.o-*-**.**---oo
* k%
B T o e
*% *
T
*k Kk
cecesescssscscscsccnncc ¥H K K
* Xk _kk kK
R T Ral ot A
*-.*t*tI*'-.l**ll*II.*l..*l...lltii
..t*.I..*l-I.-..lll..'....l***"l**
" Akk Kk
cecescssssceFaaaoe o o EW R easine
X kkAkkkk Kk *
cssesssasscsvask, By o ofie Wy
uc*.o-.*-‘ol*-u..'.ll-...u....o*o"
LR R) ---*Q-....uo.l.lloulolo
* *
cecescscscssssscsessscscseFicaa¥,
-*.***---.l--.-c.o-coo.-.*.o'*-n**
-I-'**'*..***"*"*ill.ll.I*..*..'
Xk k% * *x Kk *
I R R R R R R R e
* * kk
I R T R T T P
X kk * X khkkk K Kk
cetesescsaaas®, © o ¥ W¥o¥e0
* X k_*x
B o S SN
* Kk _* X ok Kk X Kk k_x
e W W TR AR s R, R
x % Ak _kk__
sineve®eeFoononanonosa ¥R Ah, K v
Akkk Kk * * *
cecescscae S T PRI P
* * ARk RRARRR _* *
ceeeFiiiiia. ee¥ia* L.
Xk _kk kkk _kkk L D
o RE KK, .o R DL T I
* * * * 21 * *
ceses® il N, L, cee®ilill k.
X,k * * * Xk kkk
R T R I I L P Rl
X,k kkk *
B R T I I S .
® ® 8 00 00 0000 e e l-l**..*.*.l.."*'
..I..IlII...‘.I*II'..*l.......*"'*
* ke *
S R R R R R R A
* ok *
B T .
II....ll.*...'*..l...*.lﬂ‘llll....l
'*.*.*.'.***IIIOIIIII.'IH e 0 00 ..
l-couooncouotnuu‘.l--l.'..*.* .o
* *k *
R I A T T I S I AU SR
..*t.l'*.lll..l.lII.I*QO*’*‘..'*I'I
Kk KhkKkKXRK K _* Xk kkk %
co kN, W e s TR, Feiean
® ® e 00 00 00 000 ...l“‘.....ll**l.ll
.*II-‘..III*I.'. *.I*l.ll..*'

BER = 0.140

*

* k

* o

*
*

= +3 dB, BER = 0.043 (10,000 tones)

= +9 dB, BER = 0.011 (10,000 tones)

* % % e

* ¥ % o

19

* % .

*

»

* * % e

.

*

*
*
*

* % * % o *
E 3

»

* *
e e e e
*
e e e e e e
e s e e e e

Jkk Kk kK
* *

PRI
ceced¥..

sese e
* * &k
oo e
*
s T eee e
* *
s T e e

*kkKk

oo .
**

.. EEE I el

* kk kK

. . oo

..

* k Kk

LISTINGS

HF Channel Simulator

/* hflib.c routines for HF channel simulator * /
/* eej, rsm, CCW 6/21/91 */

#include <stdio.h>
#include <math.h>

#include "hfdef.h"

#define sqrt2 1.414213562

/***************************** UTILITIES t*****************************/

/* uniform.c eej 8/12/89 x/
/* random number generator with uniform distribution */
/* from CACM June 1988, Vol 31, No 6, pp. 742-749+ */

double uniform()

{
static long sl = 123456787, s2 = 987654323;

long z, k:

k = sl / 53668;
sl = 40014 * (81 - k * 53668) - (k * 12211);
if (sl < 0) sl += 2147483563;

k = s2 / 52774;
s2 = 40692 * (s2 - k * 52774) - (k * 3791);
if (82 < 0) s2 += 2147483399;

z = 81 - 82;
if (z < 1) z += 2147483562;

return (z * 4.656613E-10);

int RandInt (i) /* Generates random integers in the range 0 to i-1. x/
int i; /* In run of 100,000 with 32 bins, had variation of *x /
{ /* 6% of mean from max bin to min bin. * /

return (i*uniform());

}

int hammingwt3 (w)

int w;

{ y
static int wt([8] = (O, 1, 1, 2, 1, 2, 2, 3};

return (wt(w & 7]);

21

HF Channel Simulator

/***************t****** DELAY LINE MODULE ********************************/

static int DelayLinelen; /* if more than one set of delay lines is */
static double DlyTF; /* needed, must pass these as parms *x/
static int iptr, gptr: /* these are passed as parms */

static double IDLine([65], QDLine[65];

double DelaylLine(InSig, Ptr, LName)

double InSig; /* current sample: put into delay line */
int *Ptr; /* current offset into delay line */
double *LName; /* ptr to delay line to use */

register double *tempptr, temp;
register int nt;

if (DelayLinelLen > 1) { /* use the delay line */
nt = (++(*Ptr)+1) % DelayLinelen;
tempptr = LName + (*Ptr %= DelayLinelen);
temp = *tempptr * DlyTF + (*(LName+nt)) * (1.0 - D1yTF) ;
*tempptr = InSig;

}

else { /* use only first element of delay line */
temp = InSig * (1.0 - D1yTF) + *LName * D1yTF;
*LName = InSig;

}

return (temp);

/********************* RAYLEIGH (NOISE) GENERATOR **************************/

void Rayleigh (x, y)
double *x, *y;

{
register double r, a;

r = sqrt(-2.0*log(uniform()));
a = TPi * uniform():;

*x = r * cos(a);

*y = r * sin(a);

22

HF Channel Simulator

[XKXKKKKKKKKK kK KXk*k*X*k*k%x FADING GAINS MODULE A *xkkkkkhkhkkkkkkk Xk kXXX X Kk kX Kk kX X % % /

static double FreqgSpread, g, a0, al, a2;
static double 1IFade0O[6], QFadeO([6], /* direct-path fading filter state vars */
IFadel([6], QFadel([6];/* delayed-path fading filter state vars */

void Gauss_Filter (Fade)
double *Fade;

{
/* Fade array of input/output data: */
/* Fade([0] is the current filter output */
/* Fade[0-2] are the current and past outputs */
/* Fade[3-5] are the current and past inputs */

/* Gaussian filter: 2-pole, 2-zero IIR_*/
Fade[0]=(g*(Fade[3])+2*Fade[4]+Fade([5])-al*Fade([l]-a2*Fade(2])/a0;

/* adjust the history terms */
Fade([2]=Fade(1l]:;
Fade([l]=Fade[0];
Fade[5]=Fade (4]
Fade(4]=Fade([3];

}

void FadeGains (i, q)
double *i, *q;

{
/* generate Rayleigh-distributed fade gain pertutbations */
Rayleigh(i+3, g+3); /* assign to current input positions */

/* Run through gaussian filter */
Gauss_Filter(i);
Gauss_Filter(q):

}

void CompMult (Xi, Xq, Yi, Yq, 2i, 2q) /* Z =X *Y */
double Xi, Xq, Yi, Yq, *Zi, *Zq;

{
*Zi = Xi*Yi - Xq*Yq;
*2g = Xi*Yq + Xq*Yi;

23

L G A

HF Channel Simulator

JXKKKKKKKKKkkkk*kk*kk**kk*x HF CHANNEL SIMULATION AX*kkkkhkXkkkhk kXX kkk kXXX XXX XX KX K % /

double Siglev = 1.0; /* global so it can be set by main routine */
static SymVect RcvSig; /* used to return resulting symbol vector */

SymVect *HFchan (XmitSig)
SymVect *XmitSig;
{
register int i;
register SymVect *in, *out;
double ni, nq, Ri, Rg, RDi, RDg, tmpl, tmp2;
register double Xi, Xq, Di, Dg; /* in-phase and quadrature main and * /
/* delayed path samples, respectively */
in = XmitSig;

out = RcvSig; /* RcvSig_is global */
for (i=0; i<NPTS; i++) {
Rayleigh(&ni, &nq); /* GENERATE NOISE */
/* Rayleigh generates in-phase and quadrature */
/* components, jointly normal, with each x/
/* component having RMS amplitude of unity; */
/* RMS noise power is also unity. * /
if (FreqSpread > 0.0) { [* GENERATE FADING GAINS */

FadeGains (IFade0O, QFade0); /* generate direct-path fade gains */
FadeGains (IFadel, QFadel); /* generate delayed-path fade gains:*/
}

else {
Rayleigh (&tmpl, &tmp2); /* don't caré (to draw RNS) */
Rayleigh (&tmpl, &tmp2); /* leave fade gains at initialized */
/* values (phase shift only) */
}
if (DelayLineLen + D1yTF > 1.0) { /* multipath? */

Di = DelayLine (Xi=SigLev*(*in) [0] [(i], &iptr, IDLine);/* generate */
Dg = Delayline (Xgq=SigLev* (*in) [1][i], &gptr, QDLine);/* delayed */
/* signals */

CompMult (Xi, Xgq, *IFade0, *QFade0, &Ri, &Rq);/* introduce fading */
CompMult (Di, Dq, *IFadel, *QFadel, &RDi, &RDQq);

}

else { /* all power in single path */
CompMult ((*in) [0] [i], (*in) [1][i], *IFade0, *QFade0, &Ri, &RQg):;
RDi = RDq = 0.0; -
Ri *= sqrt2;
Rq *= sqrt2;

}

(*out) [0] [i] = Ri + RDi + ni; /* compute output */
(*out) [1] [i] = Rq + RDgQ + ng;
}

return (out);

24

HF Channel Simulator

/********************** INITIALIZATION ************************************/

void Initialize()

{

register int i;
double DlyTime, a, c, A, C, dt;

/******************** SET UP DELAY LINES *********************/
do {

printf ("Enter delay time (ms): ");

scanf ("%1f", &DlyTime);
} while (DlyTime < 0.0);

dt = Ts/NPTS; /* dt = sample period */

DlyTime /= (dt * le3); /* scale DlyTime from milliseconds to samples */
D1yTF = DlyTime - (DelayLinelen = (int)DlyTime);

DelayLineLen++;

iptr = gptr = 0;

for (i=0; i<65; i++) IDLine(i] = QDLine([i] = 0.0;

[X*xkkkkkkkkkkkkkx*x SGET UP FADING GENERATOR **kxkxkxkkkkkxkkxk*x% /
do {

printf ("Enter frequency spread (Hz): ");

scanf ("$1f", &FregSpread);
} while (FregSpread < 0.0);

if (FregSpread > 0.0) {
FregSpread *= dt*TPi; /* scale from Hz to radians per sample */

/* magic numbers for Gaussian filter */
a = sqgrt (TPi);

c 1.5

A = a/FreqSpread;

C = c/FreqgSpread; C *= C;

/* Gaussian filter coefficients */
g = sgrt (0.5*sqrt (TPi) /FreqSpread) ;
a0 =A+C+ 1.0;
al = 2*(1.0 - C);
a2 =C+ 1.0 - a;

for (i=0; i<6; i++) /* clear fading filter state variables . . . */
* (IFade0+i) = *(QFadeO+i) = *(IFadel+i) = *(QFadel+i) = 0.0;

for (i=0; i<1.0/FreqSpread; i++) { /* and initialize them */
FadeGains (IFade0, QFade0);
FadeGains (IFadel, QFadel);
}
}

else /* fading generator disabled; set fixed gains for taps */
* (IFade0) = *(QFade0) = *(IFadel) = *(QFadel) = sqrt2/2.0;

25

S e

ALE Modem Simulator

/* ALEmodem.c eej 6/13/91 */
/* 8-ary FSK modem for HF ALE simulator */

#include <math.h>
#include "hfdef.h"
#define m_ary 8

static double tone[m_ary] [2] [NPTS];

void InitModem()

{
register int i, iprime, 3j;
double f[m_ary], dt;
register double x, dx;

£[0] = -(£[7] = 875.0); /* 8-ary FSK tone frequencies */
£[1] = -(£[6] = 625.0); -

f(2] = -(£(5] = 375.0);

f[(3] = -(£f[4] = 125.0);

dt = Ts/NPTS;

for (i=0; i<m_ary/2; i++) { /* generate tone vectors */
iprime = m_ary-i-1; /* index of conjugate frequency */
x =0.0;
dx = TPi*f[iprime] *dt;
for (j=0; J<NPTS; j++) {

tone[i] [0] [j] = tone[iprime] [0] [j] = cos(x); /* real part of téﬁe *x/
tone[i] (1] [j] = -(tone[iprime] [1][j] = sin(x));/* imag part of tone*/

x += dx; if (x >= TPi) x =-= TPi;
}
}
}
SymVect *FSKmod(InSym) /* use: SymVect *XmitSig x/
int InSym; /* XmitSig = FSKmod(InSym) */
{ /* ... (*XmitSig) [i]([3] */

return (tone[InSym]):;

}

int FSKdemod (RcvSig)

SymVect *RcvSig;

{

}

register int i, j, out;
register double sumi, sumg, sum, max=0.0;
register SymVect *in;

in = RcvSig:;
for (i=0; i<m_ary; i++) {
sumi = sumq = 0.0;
for (j=NPTS/4; j<(3*NPTS)/4; j++) {
sumi += (*in) (0] (jl*tone(i] (0] [Jj] + (*in) [1]([j]*tone[i][1][]];
sumq += (*in) [1] (j]*tone[i][0][3] - (*in) [0]([j]*tone[i][1][]];
}
if ((sum = sumi*sumi + sumg*sumg) >= max) {
max = sum;
out = i;
}
}

return (out):;

26

BER Simulator

/* BER.cC eej 6/16/91 */
/* BER simulator using hflib */
/* and ALEmodem * /

#include <stdio.h>
#include <math.h>

#include "../hfdef.h"
#include "../hflib.h"
#include "../ALEmodem.h"

main ()

{

long i, insym, outsym, Runlength, errors=0;

printf ("SNR (dB): ");
scanf ("$1f", &SigLlev);
SigLev = pow(10.0, SigLev/20.0); /* convert from dB to voltage ratio */

Initialize();
InitModem() ;

printf ("Run length: ");
scanf ("$1d", &Runlength);
printf ("\n");

for (i=0; i<Runlength; i++)
if ((outsym = ALEmodem(insym = RandInt(8))) != insym) {
printf ("*");
errors += hammingwt3 (insym * outsym);
}
else printf("."):;

printf ("\nBER = %5.31f\n", (double)errors/ (3.0 * RunLength));

Header Files

/* hfdef.h eej 6/16/91 */
/* definitions for HF channel simulator routines */

#define Pi 3.141592654
#define TPi 6.283185307

#define Ts 0.008
#define NPTS 32

typedef double SymVect[2] [NPTS];

extern double SigLev; /* declared in hflib.c */
/* hflib.h header file for HF propagation simulator routines */
/* eej 6/16/91 */

/* hfdef.h must be #included before this file */

extern double uniform() ;

extern int RandInt () ;
extern int hammingwt3() ;
extern void Initialize():;

extern SymVect *HFchan();

/* ALEmodem.h eej 6/13/91 */
/* 8-ary FSK modem for HF ALE simulator */
extern void InitModem() ;

extern SymVect *FSKmod():;

extern int FSKdemod () ;

#define ALEmodem(x) FSKdemod (HFchan (FSKmod(x)))

